Data Analytics [DA] and Machine Learning [ML] are structured, quantitative approaches to answering difficult questions about datasets. The promise of DA and ML is that the insights gained about the world can be much more complex than those which can be found by humans, and also that those insights will be free of human bias. This essay will focus on the second promise, the total objectivity of DA/ML. It has long been recognized that the outcomes of DA/ML can vary significantly depending on the choice of methodology, which already strikes a blow to the claims of objectivity. However, lately a more fundamental problem has emerged — the data used for DA/ML often contains human biases and DA/ML performed on such data replicates them.
How Discrimination occurs in Data Analytics and Machine Learning: Proxy Variables
Posted by
George Cevora on May 1, 2023 9:15:00 PM
0 Comments Click here to read/write comments
Topics: data analysis, ai, bias, discrimination, data analytics, machine learning, proxy variables
Former Goldman Sachs CIO Damian Sutcliffe joins illumr Advisory Board
Posted by
Jason Lee on Jul 29, 2021 8:30:00 AM
0 Comments Click here to read/write comments
Topics: ai, bias, discrimination, machine learning
Computers are reasonably good at analyzing large datasets, but there is one class of problem where they require a bit of help from puny humans – high dimensional datasets. By “high-dimensional” we mean “wide”, as in lots of columns. When we have wide data, it’s very hard to spot commonalities across a number of those columns. For example, if we have data from a large number of sensors, and all of them have something to say about what’s going on, it’s very hard to detect what is similar about all those readings when a particular type of event occurs.
0 Comments Click here to read/write comments
Topics: data analysis